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Abstract-The paper contains a short retrospective review of the works mainly performed by Soviet 
authors in the field of mathematical description of heat- and mass-transfer phenomena in capillary-porous 
bodies. The aim of the present work is not only to establish the priority of the scientists working 
in this field but also to outline the ways of development of the analytical methods for transport phenomena. 

Presentation is given of the methods to describe transport phenomena with different transfer potentials, 
of the relationship between the transfer coefficients and thermodynamic characteristics of capillary-porous 
bodies. 

The limit transitions to the classical Fourier and Fick equations are described. The basic relationships 
of the extreme cases are illustrated by experimental data. A short description is given of the recent works 
on turbulent heat and mass transfer in capillary-porous bodies as well as of the methods for transport 
problems with moving boundaries when the Dirac delta-function and the single Heaviside function 

are used. 

NOMENCLATURE 

mass content (moisture content) of a body; 
temperature; 

total pressure of humid air inside a body; 
specific heat of a moist body; 

specific heat of a perfectly dry body; 
specific heat of a liquid; 

thermal diffusivity of a moist body 

(a = @cp,); 
thermal conductivity of a body; 

density of a perfectly dry body; 
time; 

mass (moisture) transfer potential; 
specific isothermal mass capacity of a body; 
temperature coefficient of mass-transfer 
potential; 

specific evaporation heat (r = r12 = rzl); 

phase conversion factor of liquid into vapor; 

thermogradient coefficient based on the 
moisture content difference (6 = 6,); 
moisture diffusivity; 

molecular Mass of humid air; 

porosity; 
saturation of body pores and capillaries with 
moisture; 
universal gas constant; 
isobaric heat capacity; 

specific body capacity of vapour moisture; 
convective diffusion coefficient; 

*Deceased. 
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k P’ 
coefficient of filtrational transfer of vapour 

moisture; 

6 P’ 
relative coefficient of filtrational transfer of 

vapour moisture; 

B> coefficient defined by formula (27). 

Subscripts 

0, 
1, 
2, 
3, 
4, 

L: 

(2)> 

I;z;; 

12, 

21, 

W, 

G 

perfectly dry body; 
vapour; 
liquid; 
air; 

ice ; 
skeleton of perfectly dry body; 
evaporation zone; 
moisture zone; 

mass flow (i = 1,2,3,4); 
kinetic coefficients (i, j = 1,2,3); 

transition from vapour into liquid 
(condensation); 
liquid evaporation; 
surface; 

center of a sample. 

INTRODUCTION 

DUE TO wide use of heat pipes in different branches 
of technology, transport phenomena in capillary- 
porous bodies have recently received considerable 
attention since the wicks of heat pipes are made of 
such a kind of material [l]. There is a direct inter- 
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relation between liquid and heat transfer in a capillary- 

porous body since alongside with liquid motion there 
occurs its enthalpy transfer. This interrelation is also 

attributed to the fact that liquid is transferred not only 

under the action of a volumetric liquid concentration 
gradient but also under that of a temperature.* The 

interrelation between liquid and heat transfer becomes 
closer when liquid evaporates inside the porous body. 

In this case mass inside the capillary-porous body 
transfers not only in the form of liquid but in the form 
of vapour as well [3-51. For this reason. using separ- 

ately differential equations (Fourier’s equation for heat 
transfer and Fick’s equation for mass transfer) the 

interrelated differential equations are employed for 

heat and mass transfer in capillary-porous bodies, 

which were first proposed in [6]. Later on. thermo- 
dynamics of moist materials was developed which 

proved that not liquid concentration (moisture content) 
but mass-transfer potential 0 similar to heat-transfer 
one (temperature) [7] is shown to be the liquid transfer 

potential in the capillary-porous body. This fact should 

be accounted for in the system of two contacting moist 
bodies. At the border of their contact there occurs a 

jump of moisture contents (Fig. I). Moisture content 
is the analog of heat content (enthalpy) in the theory 
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FIG. 1. Distribution of enthalpy (heat content) (a) and 
moisture content (b) as well as of heat- and mass-transfer 
potentials (a and b) in the system of two different bodies 
in contact. Transfer of mass (c) and heat (d) occurs from 
the larger potential to the smaller one but from the smaller 

value of heat and mass content to the larger one. 

*The two-term formula for non-isothermal mass diffusion 
in a capillary-porous body was not only proposed by the 
author in 1935 but also the coefficients of diffusion and 
thermodiffusion of mass were experimentally determined for 
a number of moist materials. 

for heat and mass transfer. As a result, a system of 
heat- and mass-transfer equations with transfer poten- 

tials T and 0 was proposed. It was then proved 
experimentally that with sufficient resistance to vapour 
motion inside the body there appears the total pressure 

gradient of humid air which may also account for 
vapour and liquid transfer. This further complicated 

the system of differential equations for heat and mass 
transfer [8]. At present the necessity has arisen to 
systematize these analytical studies, to outline the ways 
of simplifying the mathematical presentation of trans- 

port phenomena and to show that classical heat- 
conduction and diffusion equations may be obtained 

by limit transitions. This necessity is still increased 

since the differential equations ofheat and mass transfer 

in capillary-porous bodies are used to solve various 
problems of building thermophysics, drying processes, 

to study heat and moisture migration in soils and 

grounds as well as to calculate the wicks of heat pipes. 
as has been shown earlier. 

1. TRANSFER EQUATIONS 

If Lfr. LIZ, Us and 11~ are used to denote mass 

capacities of vapour in capillaries, liquid, inert gas and 

solid material (ice), respectively, and the subscript 0 
refers to a dry body, then from the mass conservation 

law we may write 
? 

pO? = -divji+Ii; 

P-c 
i = 1,2,3,4 (1) 

where ji is the mass flow density involving diffusional 
and convective transfer; Ii is the mass sources or sinks 
of the ith phase due to phase transition, i.e. xi Ii = 0. 

When deriving equation (1) small negligible shrinkage 
due to mass removal was assumed (body volume 
remains invariable). If the mass flow in the body is 
slow, then as an approximation the body skeleton 

temperature may be considered to be equal to that of 

any phase of the body material. It follows that vapour 
in body capillaries is at thermodynamic equilibrium 
with the liquid. 

The energy conservation equation will then be of 
the form : 

C/IO::= -divq+Chili-CjiciVT; 
I I 

i= 1,2,3,4 (2) 

where c is the reduced specific heat of the body 

c= L.()+CC$i (3) 

ci is the specific heat of the ith phase mass (Ci = dhJdT); 
q is the heat flux density. 

Consider liquid and vapour transfer in the presence 
of inert gas (air) in capillaries and pores of the body 
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(uq = 0), i.e. in the region of positive temperatures. 
Since in the inert gas (dry air) no chemical conver- 

sions occur (I3 = 0), and in the temperature range above 
0°C phase conversions correspond to transition of 
liquid into vapour, then Iz = -II. Here a very im- 
portant assumption is made: for ordinary conditions 
of heat and mass transfer and for bodies with maximum 
porosity, masses of vapour and air cannot exceed 
lo- 5 (lo- 3 per cent) of the liquid mass. Mass content 
of the liquid is, therefore, with high accuracy equal to 
total mass content, i.e. 

Cr=CUi=fUz, i = 1,2,3. (4) 
L 

Using relation (4) and making summation in equation 
(1) with respect to i, we get 

Pog=xdivji = divj,,,. 
I 

The differential heat- and mass-transfer equations 
may be obtained from equations (1) and (2) if use is 
made of the Fourier heat-conduction equation 

q= -LVT (6) 

where i is the total or effective thermal conductivity. 
2. At first consider the simple case of no convective 

or filtrational mass transfer (a zero gradient of the total 
pressure inside the body). If the mass content and 
temperature are taken as potentials of diffusional mass 
transfer, then the expressions for non-isothermal dif- 
fusion laws are of the form: 

jr = -a,ipoVui+a,ipo~iVT; 

j, = Cji = -a,p,Vu+a,p,GVT. 

(7) 

(8) 

In transient processes the source of vapour mass I1 2 or 
. 

sink of hquid mass I21 

If as an approximation thermodynamic properties 
(specific heat and thermogradient coefficient) and 
transfer coefficients (thermal diffusivity and moisture 
diffusivity) are assumed independent af the coordinates 
of the body, then when T and u are chosen as 
transport potentials the differential heat and mass 
transfer equations will be of the form: 

l?T Er au - = aV2T+-- 
aT c aT 

g = a,V2u+a,,,,6V2T. 

The thermogradient coefficient 6 is based on the 
moisture content difference (6 = 6,). 

When drying laminated materials composed of in- 
homogeneous moist bodies in contact use is made of 
the system of differential heat and moisture transfer 
equations with 0, T as transfer potentials, since at the 
contact of individual layers there occurs moisture 
content discontinuity (Fig. 1). 

The moisture transfer potential 6 is the function of 
the moisture content and temperature of the body 

Then, 

0 = cp(u, T) = Q(u, T). (12) 

d0 = (!$rdu+($)ti dT = &du+&dT, (13) 

where C,,, = (au/a@), is the specific isothermal mass 
capacity (moisture capacity); @Jr = (aO/aT), is the tem- 
perature coefficient of the mass-transfer potential. 

Using relation (13) and assuming thermodynamic 
properties C, and @r independent of the coordinates 
and time, the system of equations (lo)-(1 1) takes the 
form: 

dT ErC a0 
-= 
aT 

a’V2T+yz (14) 

ae 
z = a~V2@+a~6’V2T (13 

where the thermodynamic properties and transfer co- 
efficients are equal to : 

c’ = c+uC,@;, iY=&+s; f-l (16) 
m ( > 

a’ = Ilc'p, , a’ = at/c’, a:, = a,c’/c (17) 

respectively. Equations (14)-( 15) are the same as 
(lo)-( 11) differing by the values of heat capacities, 
diffusion and thermogradient coefficients. 

Moisture transfer equation (15) may be obtained 
from mass conservation equation (5) using the non- 
isothermal moisture diffusion law 

j,,, = -1V&&,&VT (18) 

where 6, is the thermogradient coefficient based on 
the potential difference* 

60 = ;-or. (19) 
m 

Relation (19) is obtained from formula (3) when passing 
from equation (8) to equation (18). Substituting relation 
(18) into equation (5) and assuming I, and 8@ indepen- 
dent of the coordinates give differential equation (15) 

*The dimensions of the coefficients S(deg-‘) and 
G,,(degM-‘) are different, therefore, the coefficient 
&(& = C,,,d,) is introduced in some works. It has the same 
dimension as &. 
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with the same expressions (16)-(17) for the coefficients where h is the saturation of pores and capillaries with 

ah and 6’. vapour and air. 

In some papers and books the subscripts at the 
coefficients u’. c’, a&, 6’ are omitted. that may result 

in the wrong idea that the coefficients a. c. a, and 6 
in equations (lo)-(11) are the same as in equations 
(14)-(15). It should be borne in mind, which of the 

transport potentials are used for the description of heat 

and mass transfer. However, for many moist materials 
under drying the quantity C,O; is small (not the 
quantity & itself but rather the product C, 0;) so that 

.erC, t&/c << 1, then we have 

Using relations Ci=l hi = 1 and u2 z M. after simple 
algebraic manipulations we may obtain 

?T 
-= Ki1V2T+Ki2V2ufKi3V’P 
i;t 

(25) 

; = K21V2T+K22V2~+K23V2P (26) 

c:P 
- = K31V2TfK32V2r~+K33V2P 
?t 

(27) 

ci = c, u’ = a, a; = a,. (20) 

This is the case when the heat capacities as well as 

heat and moisture diffusion in equations (IO)-(11) 
and equations (14)-(15) are the same. 

where the coefficients Kij(i, j = 1,2,3) are equal to: 

If the inequality &(&a,- 1)/6 << 1 holds, then 
S = C,,,S’ (the reverse situation corresponds to & = 0, 

i.e. thermal moisture diffusivity may be neglected 
(moisture transfer is described only by mass-transfer 

gradient), and we then get 

Era,6 
Kll = a+- 

c ’ 
K,, =?a,; 

C 
(28) 

K13 = ca,,,dp 
c 

K2r = ~$5; K22 =a,; K23 =amsp (2% 

C,S’ E f&(Lu-’ - 1). (21) 

Once the moisture transfer potential does not depend 

on temperature (0 = 0), the thermogradient coefficient 
6 is not equal to zero (S, = 6/C,,,), since the second 
term of formula (18) describes thermal moisture dif- 

fusion. Similar relations are valid in the case of non- 
isothermal diffusion in binary gas mixtures when the 

mass concentration gradient may be expressed in terms 
of partial pressure and temperature gradients. In addi- 

tion, thermodiffusion or the Soret effect should be 

taken into account [7]. 

where C, is the specific capacity of vapour moisture 

(capacity of a capillary body with respect to humid air) 

3. In case of intense moisture evaporation inside a 
capillary-porous body the total pressure gradient arises 

that results in a filtration pattern of vapour transfer. 

On the basis of the Darcy law the mass flow density 
jsi in such a situation is defined by the relation 

MIIb 
c, = __ 

PORT 
(32) 

a, is the convective diffusion coefficient (a, = KJCBpo); 
p is the coefficient dependent on porosity II and 

moisture content u: 
jsl = j, +j, = -k,VP. (22) 

The differential equation governing the pressure field 
in the body is derived from the balance equation for 

humid air mass in pores and capillaries of the body 

B= 
PPO 

P2n - POU’ 
(33) 

The coefficient accounts for a change in the degree of 
filling up pores and capillaries of the body with humid 

air, depending on moisture content of the body; 6, is 
the relative coefficient of filtration flow of vapour 

moisture 

3% + u3) au 
PO-= 

c’r 
- div jst = EP~ - 

& 
(23) 

using relation (22). 
If as an approximation humid air (vapour-gas 

mixture) in capillaries and pores of a body is con- 
sidered to obey the Clapeyron equation of state and 
swelling of capillary walls to be neglected, then it may 
be written 

MIIb 
po 4ul-t ~3) = RT dP-;dT+;db (24) 

> 

6, = k,la,po. (34) 

When deriving heat-transfer equation (25) an as- 
sumption was made that since convection heat transfer 
in pores and capillaries is small, it may be neglected. 

If T, 0 and Pare taken as moisture transfer potentials, 
then the system of differential heat- and mass-transfer 
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equations assumes the form: 

l?T 
aZ = K~1VZT+Ki2V20+Ki3V2P (35) 

30 
r = K;1V2T+K;2V20+K;3V2P (36) 

; = K;iV2T+K;2V20+Kj3V2P (37) 

where the coefficients K& are equal to: 

erC, a; 
Kil+a’+ c, ----&=a+ 

d,a, 
-----6,; 

c 
(38) 

(39) 

(40) 

The relative coefficient of filtrational moisture flow 6; 
is based on the moisture diffusivity 1, 

Comparison of the coefficients KY and Kb shows that 
the coefficients Kb involve an additional factor of 
specific isothermal mass capacity C,,, which is a con- 
version factor from the moisture content u to the mass- 
transfer potential. Here it is of importance to note that 
when deriving the system of equations (35)-(37) the 
temperature coefficient of moisture transfer potential 
was not assumed to be equal to zero (Or # 0). It is then 
quite natural that thermogradient coefficients 6(6 = 6,) 
and & have different values since these are based on 
different moisture-transfer potentials at the same tem- 
perature drop. Unlike the coefficients 6, and 6, no 
direct proportionality between the coefficients & and 6 
exists [see equation (19)]. 

It should be noted once more that sometimes in 
the system of equations (35)-(37) the prime to the 
coefficients Kj is omitted but this does not mean that 
these are equal to the coefficients Kij in equations 
(25)-(27). It may also be noted that the calculations 
made by Mikhailov [8] show that the coefficients p 
and wPJcT are considerably less than &jCB for a great 
number of moist materials, therefore, the expressions 

for the coefficients KJj may sometimes be simplified; 
however, experimental determination of these coeffi- 
cients is the most reliable way. 

4. For practical approximate calculations transfer 
equations (27) and (37) may be simplified. Since mass 
content of vapour and air in capillaries and pores of 
a body is negligibly small, as compared to that of liquid 
(ul + u3 << u2), the left hand side of equation (17) may 
be assumed zero. Then, from equation (23) we have 

au 
.spO 5 = k,V2P. (42) 

The physical significance of this equation is that the 
total pressure drop inside this body occurs due to liquid 
evaporation and resistance when vapour moves inside 
the body (resistance to the filtrational moisture flow). 

Relation (42) allows the terms Ki, to be eliminated 
from equations (25)-(27) and system (25)-(27) to be 
reduced to system (lo)-(11) and system (35)-(37) to 
system (14)-(15). It has therefore made it possible to 
use the system of equations (IO)-( 11) or similar system 
(14)-( 15) in drying technology. 

In the moist state region more simplifying assump- 
tions may be made. With moisture content of a body 
greater than the hygroscopic one the vapour pressure of 
the material is independent of the moisture content 
but depends only on the temperature (pressure of 
saturated vapour is a single-valued temperature func- 
tion). Then with rather intense evaporation of a liquid 
inside the body the total pressure P inside the body 
is a function of the temperature only (P = f(T)). As 
an approximation it may be written: 

au ap 
cp,,- = k, r 

aT 0 V’T. 

In this case the differential heat-transfer equation is 
reduced to the ordinary differential heat-conduction 
Fourier equation involving the effective thermal con- 
ductivity which accounts for heat spent for liquid 
evaporation inside the body. However, with intense 
evaporation of a liquid inside the body and large 
moisture flows the convective contribution to heat 
transfer inside the body should be taken into account. 
So, the heat-transfer equation is of the form: 

g= [a+~(~)k,]V2T-~(~)(VTJ2. (44) 

5. The phase conversion factor E is a property of 
unsteady moisture transfer. It was introduced by 
relation (9) to characterize a source of vapour moisture. 
For steady moisture transfer the expression for a source 
must be different since in this case au/& + 0, E ---t co, 

hence, the source term in relation (9) possesses un- 
certainty, which may easily be determined. Thus, we 
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have : high accuracy instead of equations (27) and (37). 

II2 = --I,, = divji = a,1p0Vzu+a,1p0~1V2T. (45) 

The quantity am16i is the thermodiffusion coeffi- 
cient of vapour moisture in a capillary-porous body 

(a,’ = a,i6i). Here the coefficients a,i, 6i are assumed 
independent of the coordinates. Relation (45) is a more 

general expression for the source of vapour moisture 
1i2, which is also valid for unsteady moisture transfer. 

Formula (9) is obtained as a specific case from equation 

(45). As a result, instead of the system of equations 
(lo)-(11) we have the system of differential equations 

similar to equations (25)-(26) without terms V’P: 

In this case, when the total pressure gradient is 
inside the body (VP # 0), the system of the heat- and 
mass-transfer equations will contain the coefficients of 
diffusion u,= and thermodiffusion u,~& for vapour 

moisture, i.e. 

ilT . -4 
_ = aV2Tf?(ll. 
i?r c 2r’ 

? JU ? 
- = a,2V2~+a,2d2V2T+~!$ 
ar 

ST 
- = K;1V2T+ K;=V=u 
? 

(46) 
Jr 

du 
z = K;1V2Tf K;2Vzu (47) 

Such simplifications are necessary since when the 
equality (u z u2) is used, the error is negligible. If use 

is made of the formal mathematical apparatus of 
irreversible thermodynamics, then such complicated 

systems of differential equations may be obtained 
which are of no value for practical calculations [9]. 

where the coefficients Kij(i, j = 1,2) are equal to: 2. LIMITING TRANSITIONS 

K;1=a+a,,6,~=a+a~lY’2; 
C C 

(48) 
r12 

K;, = a,i c 

1. Let during heat and mass transfer the temperature 
of a moist body be unchanged with time, i.e. i?T/k = 0. 
Then, two cases are possible: 

K;= = a,,,& K& = a,,,. (49) 

Comparison of equations (48)-(49) with equations 

(28)-(29) shows that K;, = K2i, K& = K2=; the co- 
efficients K;‘, and K;, will be equal to Kll, Kt2, 
respectively if E = ~,,,~/a,,, and 6 = 6i are assumed (for 

details of such assumptions, see [7]). 

(a) equation (46) implies that V’T = 0 and V2u = 0. 
This is the trivial case of equilibrium state (temperature 

and moisture content do not vary not only with time 
but also are independent of the coordinates xi, i.e. 

u = const and T = const) or the case of steady state, 
for example, in one-dimensional problems the tempera- 

ture and moisture content are linear time functions; 
(Vu = const; VT = const). 

The differential heat- and mass-transfer equations 

(46)-(47) may thus be used to calculate moisture and 
heat transfer in capillary-porous bodies with any 

changes in u and T, including steady processes. The 
solution of equations (46)-(47) is used in building 

thermophysics, in chemical engineering as well as in 
development of experimental methods for measuring 

thermophysical properties of moist materials. It is 
quite natural that the system of equations (46)-(47) 

may be correlated by the additional potential of 
moisture transfer, P. The system of equations (25))(27) 
or (35)-(37) is then obtained, in which instead of the 
factor E the coefficients of diffusion a,i and thermo- 

diffusion &(& = a,i .6,) of vapour moisture will be 

introduced into the formulae for the coefficients Kij 
and Kh. 

(b) quasi-stationary state at r?T/& = 0 from equa- 

tion (46) it follows 

V’u = -+T + O)$} = f(x); i= 1,2,3 (51) 
12 

Thus, the differential heat- and mass-transfer equa- 
tions (25)-(27) or (35)-(37) are the most general ones 
for diffusional heat and moisture transfer in capillary- 
porous bodies with the kinetic coefficients which con- 
tain coefficients of diffusion and thermodiffusion or 
filtration transfer of vapour moisture instead of a phase 
conversion factor. Equation (42) is however used with 

(the primes at Kij are omitted, i.e. Ki = Kj , i,j = 1,2), 
i.e. the fields of both dimensionless moisture content u* 
and temperature T* are similar. Since the form of the 

functionf(xJ does not depend on time, then according 
to equation (47) the local velocity au*/& will also be 

independent of time. In the specific case at &~/ST = 

const the distributions of temperature and moisture 
content in one-dimensional problems are described by 
a simple parabola. Such a case is. encountered in the 
constant drying rate period when moisture content at 
any body point is a linear time function (au/& = const) 
and the distribution of moisture content inside the 
body with symmetric moisture transfer (infinite plate, 
cylinder, sphere) is described by a parabola. The tem- 
perature at any point of the body does not change 
with time (ZF/& = 0). If in the constant drying rate 
period evaporation occurs only at the body surface 
(no evaporation inside the body E = 0 or urni = 0), 
then the temperature at all points of the body will be 

(50) 
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the same, and to a first approximation it will be equal 
to the wet-bulb temperature T,(T = Tb = const, VT = 0, 
V’T = 0). This is shown in Fig. 2 when T, = 60°C; 
Tb = 36.5”C, aU/aT = 0.028 kg/kg h (2.8%h). This case 
does not contradict relation (51) since at V2T = 0; 
E = 0 and Kr2 = 0, and K1i # 0 and V2u # 0. Indeed, 

Distam to centre of sphere. cm 

FIG. 2. Moisture content distribu- 
tion u over the radius of a moist 
clay sphere in the constant drying 
rate period at different times 

(7’,‘, = 60°C; 7i, = 365°C). 

at aT/aT = 0 from equation (10) we have that at 
E = 0, V2T = 0. If in the constant drying rate period 
(aT/dr = 0, aU/dT = const) evaporation occurs inside 
the body (E # 0, a,1 # 0), then according to expression 
(51) the temperature distribution is described by the 
parabolic law in such one-dimensional problems since 
Ki2 # 0. Such a case is presented in Figs. 3 and 4. All 
the above cases of moisture content and temperature 
distributions are observed in the constant drying rate 
period of colloidal capillary-porous bodies and are at 
present the experimental facts of experimental laws. 

2. Let moisture content of a body be invariable 
with time during heat and mass transfer (quasi- 
stationary state with heating of a moist body), i.e. 
&@T = 0. Then, from equation (47) we have 

V2u = -zV2T, at dUpT = 0. (52) 

If K2i # 0 and Kz2 # 0, then the field of moisture 
content of the body is similar to that of the temperature 
(Fig. 5). However, at &@r = 0 the local heating rate 
is not zero aT/dz # 0 according to equation (46) i.e. 
the temperature profile inside the body does not vary 
with time since the temperature behaviour at any body 
point follows the same law. Such situations may be 
found in experimental thermophysics, for example, in 
the method of quasi-steady heating of moist bodies 
when determining the thermogradient coefficient and 
thermal conductivity of moist bodies. In this case a 
moist body is heated with a constant rate (oC/min) 
when the ambient temperature is a linear time function. 
Since some time instant the temperature at any body 
point is a linear time function (Fig. 6) and in one- 
dimensional symmetric problems the temperature dis- 
tribution is described by the parabolic law. The 

Time r, min 

FIG. 3. Drying curve ii = f(r) and temperature curves T = cp(x, T) of a moist ceramic plate with 
infrared drying. 
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h 130 min L 

::tlrllliri 
Surface Center Surface 

FIG. 4. Temperature distribution across a 
moist ceramic plate T = f(x, T) for the 

case in Fig. 2. 

Time, min 

FIG. 6. Distribution of temperature 
T = ,f(r/R) and moisture content 
u = f(r/R) in a clay sphere heated at 
a constant rate b = 0.37”C/min in a 

Surface r/R 
Center 

FIG. 5. Change of the temperature with 
time T = f'(r) for water (I) and peat (II) 
in a metallic spherical flask for the co- 

ordinate r = 0 (sphere center). 

parabolic law. The parabolic moisture distribution (Fig. 

7) corresponds to the parabolic temperature distribu- 
tion. The coefficients u and fi are determined by the 
drops in temperature AT(AT = 7’+,- T,) and moisture 

content Au(Au = u, - urn), i.e. T = T,- (r/R)‘(T,- T,); 
u = U, - (r/R)‘(u, - u,) and if heat-transfer coefficient 
is known, then thermal conductivity may also be found. 
Figures 6 and 7 show heating of a moist part in a 
metallic spherical flask 9.94cm dia in water at a con- 
stant rate b = OVC/min. The temperature drop AT is 
equal to 32°C and the moisture content drop Au = 14.8. 
The thermogradient coefficient 6 = 14+3/32 = 0.463x/ 

quasi-stationary state. 

Surface r/R Center 

FIG. 7. Moisturecontent distribution ofpeat after 
80min heating (Fig. 4) with the uniform initial 

distribution 158 per cent (u = u0 = 1.58 kg/kg). 

“C z 0.46 x 10 _ 2 kg/kg deg. The thermal diffusivity 

bR* 0G3(4.98)2 

a = b(T,-- T,) = ___ 6.128 

= 0.26cm2/min z 4.3 x 10e7 m’js. 

In [2] moisture migration is shown to occur in the 
form of liquid. Figure 4 shows heating of a clay sphere 
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covered with moisture insulation in humid air at a 

rate b = 0.37”C/min. In this case the coefficient 
6 = 0.125 x 10c2 kg/kg”C. It is quite natural that at 

au/d? = 0 the trivial case aT/dz = 0 may occur at 
V2u = 0 and V2T = 0 (steady state T = const; Vu = 
const or equilibrium state u = const; T = const). 

Finally, consider transition of equations (46) (47) into 
the classical Fourier heat-conduction and Fick dif- 
fusion equations. In a perfectly dry body there is no 

mass transfer (at u = 0; K22 = 0; KZ1 = KL2 = 0). 

Then, from equations (46) and (47) we get the classical 
heat-conduction equation 

dr = K V2T E aV2T, 
& ii 

(53) 

The equality u = 0 does not imply that according to 
equation (47) V’T = 0 since the factor K,, = 0. The 

same equation may be obtained from equations (46) 

and (47) for a moist body with maximum possible 
moisture content amax (swelling moisture). Then, at 
small temperature drops there is no moisture transfer 

(at u = amax, KZ2 = K2r = K1 2 = 0), hence, &@r = 0, 
and equation (53) is obtained from equations (46) 
and (47). In this case the moist body is heated in a 

similar fashion as the dry body with no re-distribution 

and evaporation of moisture (moisture content at any 
point is constant and the same u = urnax = u,,,~~). If 

during mass transfer the body temperature is constant, 
T = const, (LT/& = 0; VT = 0; V2T = 0), then equa- 
tions (46) and (47) the classical Fick diffusion equation 
is obtained 

&A 
- = K22V2u. 
at 

(54) 

Equation (46) at V2T = 0 and aT/& = 0 does not 
imply that V2u = 0 since Kr2 = 0 because a,, = 0 or 

E = 0 (no evaporation inside the body). 

The experimental data and calculations are specially 
presented here from the author’s works of 1935-1940 
to attract the readers’ attention to the fact that 

numerous problems of the theory for transport 
phenomena in capillary-porous bodies were solved long 
ago and were obviously unknown to foreign readers, 

as at present the works appear which deal with these 
particular problems in the same manner [lo-l 11. The 
thermogradient coefficient 6 is a counterpart of the 

thermodiffusion ratio KT in the theory of thermo- 
diffusion in binary gas mixtures [12-131. The change 
in 6 with moisture content tl for moist capillary-porous 

bodies (Fig. 8) is similar to that of the thermodiffusion 
ratio KT with concentration of the diffusing mixture 
component. It is important to note that for maximum 

moisture content (u + u,,,) the thermogradient coeffi- 
cient 6 is zero (6 -+ 0). Hence, when the body is heated 
in the case of maximum moisture content, no re- 

12 r 16 20 24 28 32 

W, per cent 

FIG. 8. Thermogradient coefficient 6(%deg) vs clay 
moisture content II(%); (a) p. = 1142kg/m3; (b) po = 
1000 kg/m3 at a mean temperature: 1.23”C; 2.33”C; 

3.43”C according to [ 121. 

distribution of moisture content due to a temperature 
gradient occurs. It may also be noted that some 

relationships of heat and mass transfer in capillary- 
porous bodies may be used for studying thermo- 
diffusion and diffusion thermoeffect in binary gas 

mixtures. 

3. INTEGRAL EQUATION 

The integral equation of heat and mass transfer 
may be obtained from the system of equations (46)-(47). 

If T and ii are used to denote mean volumetric 
temperatures and mass content, respectively 

T=l s TdV, 
1 

ii=-- 
TV W) s v (V) 

udV (55) 

then considering the transport coefficients and thermo- 
dynamic properties be invariable over the volume, we 

J/dTza 
dz s W 

V’TdV+ F/E Fd; 

(56) 

=a 
I (S) 

VTdS+L%$ 

here use was made of the Gauss-Ostrogradsky theorem. 
Using the boundary condition 

- WT),+ 4,+(r) - rj&) = 0 (57) 

where q(T) is the heat flux density near the body surface 
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and the differential equation 
_I . 

po -5: = -divj2(r) + epo !‘I! 
iT 

upon slight transformation we have 
_ 

du 
G,(T) = rp,RV z + p,,Rvc -af (59) 

where q,(z) is the heat flux averaged over the surface 

area, RV is the ratio of the body volume I/ to its 
surface area S (RV = V/S). 

Integral equation (59) shows that the heat q,(7) 

supplied to the body is spent for liquid evaporation 

rpORv.diiJdr and heating of the body pORVcdT/dt. 
Up to now rather slow motion of liquid and vapour 

in a capillary-porous body has been considered. The 

situations are however possible when liquid flows 
with a high velocity. So, in such a case temperatures 

of the solid skeleton and of liquid in pores are not 
the same. 

4. INTENSE HEAT TRANSFER 

Note that the subscript “s” refers to the solid skeleton 
and “f “, to the liquid flowing inside. 

The mean temperature in an infinitesimal volume of 

a body will then be equal to: 

1 - I- 
T=- 

1-R T”=nTf 
where II is the porosity. 

Upon using Fourier-Kirchhof’s equation separately 
for the liquid and skeleton and summing them up, we 

arrive at [ 151: 

=AJdiv(gradIIi=)+l,div[grad(l -fl)T]+divq* (61) 

where 6,. is the mean linear velocity of the liquid 
(2,. = j,/pr), q* is the heat flux vector. in addition to 

the heat-conduction one 

where integration is performed along the surface S, 
being in contact with body pores (S is the surface con- 
fining the volume V). From equation (61) it follows 
that unlike Fourier--Kirchhof’s equation, heat is trans- 
ferred not only by conduction 

q = - [lN, + (1 -II)&] grad T, (63) 

but also by contact transfer between the solid skeleton 
and liquid (integral term in expression (62)) as well as 
by turbulent heat transfer (expression in square 

brackets in (62)). Indeed, the heat flux 

(‘.f P/ [a, ‘i; - “.I Trl (64) 

is a counterpart of the turbulent heat flux qtur in 
moving liquid 

7 qtur = c&V- Tz) = cPpT v (65) 

Thus, in a porous body additional heat transfer due 
to a complex mechanism of liquid motion may exist. 

Dwell upon this point in more detail. In most cases 
turbulent heat transfer is considered proportional to 
temperature gradient 

qt,,r = cPpo(% To) = &VT (66) 

where Ltur is the turbulent thermal conductivity 

(L, = c,pa,,,); for liquid flow (c, = c2 ; p2 = p; A2 = I.). 
Use of Fourier-Kirchhof’s heat-transfer equation for 
turbulent incompressible liquid flow (p = const) gives 

cpp(g +div UT) = div(LVT). (67) 

If averaging is made with respect to time 

T(7) = & s r+!i,r 

T(7) dt; 
T 

$7) = ; 

s 

i+iir 

v(z)dz (68) 
i 

then T, fi are different in the time interval At. Thus, 
we have 

cPp -+ c,pdiv(uT) = div(/lVT). 
?7 

(69) 

Usually 

VT = CT-tsT+vT = CT-- (CT-- VT). (70) 

that results in Fourier-Kirchhof’s equation with the 
additional term div(G- z), which is referred to as a 

divergence of the turbulent heat flux div qt,, 

c,P(g+ fiVr) = div(l,,,VT). (71) 

The alternative approach is however possible. VT is a 

vector quantity which may be compared with the vector 
quantity iiTi by means of the second-order tensor B 

r;T = B. GT. 

Then, instead of equation (71) we have 
- 

c,,pg+(c,pVT).(fi.B)+c,ptr(TVv.B) 

(72) 

+ cpp. T. 6. div B = div(lVT). (73) 

Since the liquid is incompressible, div V = 0. Equation 
(73) essentially differs from equation (71) as it contains 
the turbulent transfer coefficient B instead of the 
turbulent thermal conductivity. From our point of view 
transition from the vector VT to the vector $ is more 
correct than use of relations (67) and (70). Similar 



transformations are possible for relation (62), using 
formula (72). In this case, however, tensor trans- 
formation (72) which establishes the relationship 
between UT and CT is single but not necessarily linear. 
The transformation matrix is found from the equation 
which may be solved using the boundary conditions 
at the surface Ai. Thus, for capillary-porous bodies 
introduction of turbulent thermal conductivity allows 
additional assumptions to be avoided. 
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T,(O, 7) = fib) < 7); r>O (78) 

5(r) < x < I, 7 > 0 (79) 

7’2b>O) = (~2C4 a T’, 5(O) -=c x < I 030) 

T,(L 7) = f2(7) > Ty, 7>0 (81) 

where T, is the freezing surface temperature (for water 
Tf z “C); the subscript 1 refers to the frozen zone 
(porous body plus ice); the subscript 2 refers to the 
moist zone (porous body plus water). 

The conjugation conditions are 

The integral relation in formula (64) defines addi- 
tional heat flux at the contact line of the liquid and 
the capillary walls. The same situation takes place in 
case of filtrational liquid motion inside a porous body. 

Apart from hydrostatic pressure and other external 
forces liquid motion inside the porous body involves 
an additional force exerted by the liquid on the porous 
structure. The value of the force f, calculated per unit 
volume [ 151 

1 
f, = fv 

s 
[Y-p&J.n’dA = Rt’ (74) 

A, 

T[5(7), 71 = T,[5(7), 73 = T, (82) 

1 “Tz=a !Lru 5 
’ ax ’ ax ‘dr’ 

(83) 

where R is the drag coefficient, which is a function of 
a local liquid velocity averaged with respect to the 
volume. The porous body in this case is assumed to 
be a non-oriented porous structure. The differential 
equation of filtrational liquid transfer will then be of 
the form : 

As has been shown in [18], this Stefan problem may 
be reduced to the non-linear heat-conduction problem 
by introducing the equivalent volumetric heat capacity 
Ep defined by 

Ep = cp+ruoS(T-TJ) (84) 

where 

Vp-qdiv(Vi$+ RG = 0. (75) 

Equation (75) differs from the ordinary Darcy fil- 
trational equation by the additional term Rv. Poiseuille’s 
equation for laminar liquid motion in capillaries is 
obtained as a specific case (R = 0) from the Darcy 
equation. 

ClPl, 
cp = 

T < T, 

~2~2, T > T,. 
(85) 

Here 6(T- T,) is the Dirac delta function. Then, 
equations (76) and (79) may be reduced to the single 
equation 

5. RECESSION OF PHASE CONVERSION SURFACE 

In some cases of heating of moist porous bodies 
the evaporation surface (surface of phase conversions) 
may recede. In such a case the problem on heat and 
mass transfer is mathematically formulated as that 
with moving boundaries, which may be referred to as 
an example of the Stefan problem of freezing water or 
moist body [17]. Solution of problems with moving 
boundaries affords great difficulties. However, these 
may be reduced to ordinary heat-transfer problems 
by introducing equivalent transport coefficients which 
account for heat of phase transitions. Let us illustrate 
this on the simplest Stefan problem on freezing of a 
moist body. The one-dimensional Stefan problem is 
formulated as follows : 

In [18] equation (86) was solved numerically. Good 
agreement was achieved between the solution obtained 
and the exact analytical one. In particular, the Stefan 
law of recession of a freezing surface 5 = /IJr was 
obtained. 

The problem on determination of mass content and 
temperature fields with evaporation surface recession 
involves solution of the system of differential heat- and 
mass-transfer equations with moving boundaries. For 
a one-dimensional problem it may be written: 

(87) 

(i) = 1,2 
_=_ (88) 

0 < x < t(7) (76) where the subscripts (i) denote: (i) = 1 is the evap 
oration zone; (i) = 2 is the moist zone. 

TI(x, 0) = CPI(X) < T- ; 0 < x < C(O) (77) The conjugation conditions of these bodies are such 
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that at .Y = C(T). we have 

For this problem the Stefan problem may be obtained 
as a specific case. In the evaporation zone only vapour 
(c(i) = 1) is assumed to move while in the moist zone 

only liquid (st2) = 0). Then, invariable mass content of 
the moist zone is assumed (u2 = u = const), hence, a 
mass flow in this zone is absent (a,(,, = 0). In the 

evaporation zone mass content is equal to zero 

(u (i) = 0). From equations (87) and (88) differential 

equation (66) is then obtained, and from conjugation 

conditions (90) and (91) condition (83) follows. In this 
case mass transfer is equal to: 

di_’ 
.i(t) =jlW =j2(4 = rpOuo-. 

dr 
(92) 

If only vapour transfer is assumed to occur in the 
evaporation zone with no liquid transfer (E(~, = 1) and 
only liquid (.Q, = 0) is assumed to flow in the moist 

zone, then the phase conversion factor changes spas- 
modically. Not the temperature of the evaporation 

zone surface but certain mass content u/, at which 
recession of the evaporation surface begins, serves as 
the boundary of a jump change in the factor. Unlike 
the Stefan problem on freezing of a moist body, the 
temperature Tf of the evaporation surface is variable. 

The evaporation surface is characterized by some 
mass content ~1~ below which mass supply becomes 
less than vapour removal from the evaporation surface, 
that causes recession of the latter. Then, instead of 

the systems of differential equations (87) and (88) with 

moving boundaries it is possible to write an ordinary 
system of the differential equations 

(93) 

(94) 

in which the phase conversion factor changes spas- 

modically. i.e. 

E = E(U) = [H(u)-H(u-uf)] 

here H(z) is the single Heaviside function 

(95) 

H(z) = 
i 

0 z,<o 
1 

z > 0. 
(96) 

Dillerential mass-transfer equation (94) describes liquid 
transfer. and vapour transfer is accounted for by the 
negative source ~ill,ii~. The system of equations (93)) 

(94) is analogous to equation (50) but the phase con- 
version factor varying spasmodically from 1 to 0 when 
II = tif (Fig. 9). However. for some porous materials 

FIG. 9. Step change in E. 

the phase conversion factor varies with mass content 
continuously rather than spasmodically (Fig. 10). In 

this case the factor is a continuous mass content 
function E(U). For approximate calculations the con- 
tinuous curve E(U) may be replaced by the step one 

(Fig. 10). 

E(U) Z H(u)-0’7H(U-004). (97) 

The advantage of such replacement is that instead of 
the complex function E(U) two limiting values us = 004 
and E = 03 at u > 0.04 are chosen. 

For a number of porous materials it has been 
established experimentally that the rate of evaporation 

surface recession is constant (dt/dr = /3 = const). The 

complex curve E(X, 7) may then be replaced by the step 

FIG. 10. Plot of factor E vs moisture content for quartz 
sand [19]. 
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For calculation of porous wicks in heat pipes, whose 

application has been considered earlier, it is necessary 

to know the basic relationships of heat and mass 

transfer in capillary-porous materials. Such knowledge 

was accumulated during the recent decades from in- 
vestigations of drying processes of moist materials and 
should be used for developing low temperature heat 

pipes. 

FIG. 11. Relationship between E and infinite 
plate coordinate (&R thick) for different times. 

one (Fig. 1 I), and the approximate formula 

E(X, r) = H(x)-H(x-/IT) (98) 

may be used where H(x) is the single Heaviside 
function. It is convenient to introduce the single Heavi- 
side function when using the integral transformation 

technique. Thus, the system of differential heat- and 
mass-transfer equations (93)-(94) may be used to solve 

the problems on recession of the evaporation surface 
(problems with moving boundaries). This is due to the 

fact that when deriving formula (9) for a heat source 
no limitations are imposed on E which may be any 
function of mass content or the function of coordinates 

and time and may change spasmodically. 

Finally, it should be noted that capillary-porous 
materials are widely used as wicks of heat pipes. Heat 
pipes allow heat to be transferred in one direction 

(heat diodes) and thermostating to be performed in the 
presence of variable heat source. Their operation does 
not depend on the presence of a gravitational field, 

therefore, these are widely used in space equipment. 
For instance, on the space vehicle “Skylab” thermo- 
stabilization of the cabin was carried out by means of 

low temperature heat pipes. At the Heat and Mass 
Transfer Institute the works are being carried out on 
application of heat pipes for thermostating of electronic 

equipment, internal combustion engines as well as for 
cooling of super-conducting electric cables (cryogenic 
transmission lines). The current-carrying part of the 
cable is made of a pack of high-conducting wire nets 

covered with porous insulation. 

REFERENCES 

1. A. V. Luikov, Hydrodynamics and heat transfer in 
capillary-porous materials used in heat pipes, Inter- 
national Heat Pipe Conference (1973). 

2. A. V. Luikov, On thermal diffusion of moisture, Zh. 
Prikl. Khim. S(8), 1354 (1935). 

3. A. V. Luikov, Moisture gradients in the drying clay, 
Trans. Ceram. Sot. 35, 123 (1936). 

4. A. V. Luikov, Geschwindigkeits- und Temperatur- 
kurven des Trockungsvorgang, Kolloid-Z. 71(Hl), 103 
(1935). 

5. A. V. Luikov, Kinetics and Dynamics of Drying and 
Moisture Processes. Gizlegprom, Moscow (1938). 

6. A. V. Luikov, Drying Theory. Gosenergoizdat, Moscow 
(1950). 

7. A. V. Luikov, Transport Phenomena in Capillary-Porous 
Bodies. Gostekhizdat, Moscow (1954). 

8. A. V. Luikov and Yu. A. Mikhailov, Theory of Energy 
and Mass Transfer. Izd. AN BSSR, Minsk (1959). 

9. J. Valchar, Contribution to the analysis of thermo- 
dynamic vector of current densities and forces for the 
simultaneous heat and moisture transfer in capillary- 
porous materials, in Heat and Mass Transfer, Vol. 9, 
Pt I, p. 368. Izd. Nauka i Tekhmka, Minsk (1972). 

10. I. R. Philip and D. A. de Vries. Trans. Am. Geophys. 
Union 38, 222, 594 (1957). 

11. J. Van der Kooi and D. A. de Vries, Moisture transport 
in cellular concrete roofs, in Hear and Mass Transfer, 
Vol. 9. Pt 2. D. 355. Izd. Nauka i Tekhnika. Minsk (1972). 

12. A. V. Luikov, On limiting transitions of the system of 
the differential heat and mass transfer equations, In&.- 
Fiz. Zh. 24, 152 (1973). 

13. K. E. Grew and T. L. Ibbs, Thermal Diffusion in Gases. 
Cambridge University Press, Cambridge (1952). 

14. Kh. Baidzhanov, The study of the dependence of internal 
mass-transfer coefficients of typical dispersed materials 
upon different bond forms of absorbed moisture and 
temperature, Thesis, Pedagogical Institute, Kiev (1967). 

15. J. C. Slattery, Momentum, Energy and Mass Transfer in 
Continua. McGraw-Hill, New York (1972). 

16. A. V. Luikov, Heat and Mass Transfer Handbook. Izd. 
Energiya, Moscow (1972). 

17. A. V. Luikov, Analytical Heat Diffusion Theory. 
Academic Press, New York (1968). 

18. C. Bonacina. G. Comini, A Fasano and M. Primicerio, 
Numerical solution of phase-change problems, Int. J. 
Heat Mass Transfer 16(iO), 1825 (1973). 

19. A. V. Luikov (Editor), Heat and Mass Transfer in 
Capillary-Porous Bodies, Collected papers. Gosenergo- 
izdat, Moscow (1957). 



14 A. V. LUIKOV 

SYSTEMES D’EQUATIONS AUX DERIVEES PARTIELLES POUR LE TRANSFERT DE 
CHALEUR ET DE MASSE DANS DES CORPS MICROPOREUX 

R&urn&Cet article est une courte revue des travaux principaux d’auteurs sovietiques dans le domaine 
de la description mathtmatique des phenomenes de transfert de chaleur et de masse dans des corps 
microporeux. Le but de ce travail n’est pas seulement d’ttablir la priorite des travaux dans cc domaine, 
mais aussi de degager les voies de dtveloppement de methodes anaiytiques. 

On presente les methodes pour dtcrire les phenomenes de If’ansport avec differents potentiels de 
transfert et on donne la relation entre les coefficients de transfert et les caracteristiques thermodynamiques 
des corps microporeux. 

On precise les limites de transition des equations classiques de Fourier et de Fick. Les solutions pour 
les cas extremes sont illustrtes par des resultats exptrimentaux. On donne une breve description des 
travaux r&cents sur le transfert turbulent de chaleur et de masse dam les corps microporeux et sur les 

methodes de resolution des problemes de transport avec limites deformables. 

SYSTEME VON DIFFERENTIALGLEICHUNGEN FUR WARME- UND 
STOFFUBERGANG IN KAPILLAR-POROSEN KORPERN 

Zusammenfassung-Die Arbeit enthllt einen kurzgefaBten Riickblick iiber hauptsachlich von russischen 
Autoren auf dem Gebiet der mathematischen Beschreibung von Warme- und Stoffiibergangsphlnomenen 
in kapillar-porbsen Korpern durchgefuhrten Arbeiten. Ziel der vorliegenden Arbeit ist nicht nur, die 
Prior&it der auf diesem Gebiet tatigen Wissenschaftler zu sichern. sondern such, die Entwicklungslinien 
der analytischen Methoden fur Transportphanomene aufzuzeigen. 

Behandelt werden die Methoden zur Beschreibung von Transportphanomenen mit unterschiedlichen 
Ubertragungspotentialen, die Beziehungen zwischen den iibergangskoeffizienten und thermodynamische 
Eigenschaften der kapillar-poriisen Korper. Die Grenztibergange auf die klassischen Gleichungen von 
Fourier und Fick werden beschrieben. Die grundlegenden Beziehungen der Extremfalle werden durch 
Versuchsergebnisse veranschaulicht. Auf die jiingeren Arbeiten iiber turbulenten Wlrme- und 
Stoffubergang in kapillar-porosen Korpern wird kurz eingegangen, ebenso auf die Methoden fur 
Transportprobleme mit bewegten Grenzen, soweit die Dirac-Delta Funktion und die einfache Heaviside- 

Funktion verwendet werden. 

CHCTEMbI AW@@EPEHHWAJIbHbIX YPABHEHHH TEI-IJIO- I4 MACCOI’IEPEHOCA 
B KAI-IMJIJIJIPHO-IIOPHCTbIX TEJIAX 

(OB3OP COCTOIIHMR BOHPOCA) 

AI~BOIBL@IB - B CTaTbe IIpeLmTaBneH KfJaTKBfi BCTOpAYeCKBii 063op, B OCHOBHOM, COBeTCKWX pa6oT 
B o6nacTB MaTeMaTHYeCKOrO OnWCaHAR senesIiii Tenno- w MacconepeHoca B KanIfJIJI5IpHO-IIOPBCTblX 
TeJIaX He TOJIbKO C IIeJIbIo yCTaHOBneHB5I IIpAOpBTeTa y’IeHbIX, pa6oraroumx B 3TOk o6nacru, HO C 
LIeJIbIo noKa3a nyTe8 pa3BBTBSI aHa.i-IBTB’IeCKAX MeTOBOB BccnenoBaHwI XBneHuP nepeHoca. 

nOKa3aHbI MeTOBbI OIIACaHHR BBJICHBB IIepeHOCa C pa3HbIMB IIOTeHUBaJIaMH IIepIZHOCa, BSaRMO- 
CBI13b MeXCBy K03(t)C@IBieHTaMH IIepeHOCa II TePMOBBHaMH’IeCKHMB XapaKTepBCTHKaMB KXIHJIJISlpHO- 

IIOpBCTblX Ten. npABeBeHb1 IIpeLB2IbHbIe IIepeXOLIbI K KJIaCCB’IcCKBM ypaBHcHIiBM @ypbe II @BKKa. 
OCIiOBHbIe 3aKOHOMepHOCTB IIpe&ZJIbHbIX CJIyYaeB BJIJIB3CTpBpOBaHbI 3KCIIepBMeHTaJIbHbIMH LIaH- 
HbIMH. KpaTKO OIIACBHbI IIOCJIe,IIHWe pa6OTbI II0 Typ6yJIeHTHOMy TennO- II MaCCOIIePeHOCy B 
KanBnnBpHo-nopBcTbIx renax, a TaKme MeTonbI omicamia sana9 nepenoca c nonmixotbtMri rpaHB- 
BaMu Ha 0cHoBe Bcnonb30BaBBX nenbTa &HKIIBB ,&paKa 14 enuBuyHot +yBKUBB XeBBcaZtna. 


