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Abstract—The paper contains a short retrospective review of the works mainly performed by Soviet
authors in the field of mathematical description of heat- and mass-transfer phenomena in capillary-porous
bodies. The aim of the present work is not only to establish the priority of the scientists working
in this field but also to outline the ways of development of the analytical methods for transport phenomena.

Presentation is given of the methods to describe transport phenomena with different transfer potentials,
of the relationship between the transfer coefficients and thermodynamic characteristics of capillary-porous
bodies.

The limit transitions to the classical Fourier and Fick equations are described. The basic relationships
of the extreme cases are illustrated by experimental data. A short description is given of the recent works
on turbulent heat and mass transfer in capillary-porous bodies as well as of the methods for transport
problems with moving boundaries when the Dirac delta-function and the single Heaviside function

are used.
NOMENCLATURE k,,  coefficient of filtrational transfer of vapour
u, mass content (moisture content) of a body; moisture;
T, temperature; Ops relative coefficient of filtrational transfer of
P, total pressure of humid air inside a body; vapour moisture;
c, specific heat of a moist body; B, coefficient defined by formula (27).
¢y,  specific heat of a perfectly dry body;
cs, specific hgat o'f a liquid; ' Subscripts
a, thermal diffusivity of a moist body
(a@=A/cpok; 0, perfectly dry body;
A, thermal conductivity of a body; L, Yap(?ur;
po,  density of a perfectly dry body; 2, hgmd;
T, time; 3, ‘f’"r;
0, mass (moisture) transfer potential; 4, 1ee;
C,, specific isothermal mass capacity of a body; 5, skeleton ,Of perfectly dry body;
0, temperature coefficient of mass-transfer ), evaporanon zone;
potential; (2), moisture zone;
r, specific evaporation heat (r = ry, = r,;); m, mass .ﬂow { = L2, 3 ‘.‘);
g, phase conversion factor of liquid into vapor; Ky, kmet%c' coefficients (i, = 1, 213 );,
3, thermogradient coefficient based on the 12, transition from vapour into liquid
moisture content difference (6 = 4,); (.cor{densatlon);.
Am,  moisture diffusivity; 21, liquid evaporation;
M, molecular mass of humid air; Ws surface;
. poOTosity: c, center of a sample.
b, saturation of body pores and capillaries with
moisture; INTRODUCTION
f’ iusr:l:::isjlhgc:i z:;:i?g, t;’ DuE 10 wide use of heat pipes in diﬁ"er.ent brapches
C;’, specific body capacity of vapour moisture; of technology, transport p henomgna n ca}pxllary-
a convective diffusion coefficient: ’ porous boFlles have .recently recel_ved considerable
e ’ attention since the wicks of heat pipes are made of
*Deceased. such a kind of material [1]. There is a direct inter-
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relation between liquid and heat transfer in a capillary-
porous body since alongside with liquid motion there
occurs its enthalpy transfer. This interrelation is also
attributed to the fact that liquid is transferred not only
under the action of a volumetric liquid concentration
gradient but also under that of a temperature.* The
interrelation between liquid and heat transfer becomes
closer when liquid evaporates inside the porous body.
In this case mass inside the capillary-porous body
transfers not only in the form of liquid but in the form
of vapour as well [3-5]. For this reason. using separ-
ately differential equations (Fourier's equation for heat
transfer and Fick’s equation for mass transfer) the
interrelated differential equations are employed for
heat and mass transfer in capillary-porous bodies,
which were first proposed in [6]. Later on. thermo-
dynamics of moist materials was developed which
proved that not liquid concentration (moisture content)
but mass-transfer potential § similar to heat-transfer
one (temperature) [ 7] is shown to be the liquid transfer
potential in the capillary-porous body. This fact should
be accounted for in the system of two contacting moist
bodies. At the border of their contact there occurs a
jump of moisture contents (Fig. 1). Moisture content
is the analog of heat content (enthalpy) in the theory
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Fic. 1. Distribution of enthalpy (heat content) (a) and
moisture content (b) as well as of heat- and mass-transfer
potentials (a and b) in the system of two different bodies
in contact. Transfer of mass (c) and heat (d) occurs from
the larger potential to the smaller one but from the smaller
value of heat and mass content to the larger one.

*The two-term formula for non-isothermal mass diffusion
in a capillary-porous body was not only proposed by the
author in 1935 but also the coefficients of diffusion and
thermodiffusion of mass were experimentally determined for
a number of moist materials.

for heat and mass transfer. As a result, a system of
heat- and mass-transfer equations with transfer poten-
tials T and 0 was proposed. It was then proved
experimentally that with sufficient resistance to vapour
motion inside the body there appears the total pressure
gradient of humid air which may also account for
vapour and liquid transfer. This further complicated
the system of differential equations for heat and mass
transfer [8]. At present the necessity has arisen to
systematize these analytical studies, to outline the ways
of simplifying the mathematical presentation of trans-
port phenomena and to show that classical heat-
conduction and diffusion equations may be obtained
by limit transitions. This necessity is still increased
since the differential equations of heat and mass transfer
in capillary-porous bodies are used to solve various
problems of building thermophysics, drying processes,
to study heat and moisture migration in soils and
grounds as well as to calculate the wicks of heat pipes.
as has been shown earlier.

1. TRANSFER EQUATIONS

If wy. uy, us and w, are used to denote mass
capacities of vapour in capillaries, liquid, inert gas and
solid material (ice), respectively, and the subscript 0
refers to a dry body, then from the mass conservation
law we may write

Cu; . .
pozt—=~d1v1,-+1,-; i=1234 (1)
where j; is the mass flow density involving diffusional
and convective transfer; I; is the mass sources or sinks
of the ith phase due to phase transition, i.e. 3 ; I, = 0.
When deriving equation (1) small negligible shrinkage
due to mass removal was assumed (body volume
remains invariable). If the mass flow in the body is
slow, then as an approximation the body skeleton
temperature may be considered to be equal to that of
any phase of the body material. It follows that vapour
in body capillaries is at thermodynamic equilibrium
with the liquid.

The energy conservation equation will then be of
the form:

oY
T
CpPo ;? = —lequ'ZhlI,*‘z‘],ClVT,
i=1,2,34 ()

where ¢ is the reduced specific heat of the body

c= c0+Zciui (3)

¢; is the specific heat of the ith phase mass (¢; = dh;/dT);
g is the heat flux density.

Consider liquid and vapour transfer in the presence
of inert gas (air) in capillaries and pores of the body
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(usy = 0), i.e. in the region of positive temperatures.
Since in the inert gas (dry air) no chemical conver-
sions occur (I; = 0),and in the temperature range above
0°C phase conversions correspond to transition of
liquid into vapour, then I, = —I;. Here a very im-
portant assumption is made: for ordinary conditions
of heat and mass transfer and for bodies with maximum
porosity, masses of vapour and air cannot exceed
107 % (1072 per cent) of the liquid mass. Mass content
of the liquid is, therefore, with high accuracy equal to
total mass content, i.e.
u=Ywu=u;; i=1273 4)
Using relation (4) and making summation in equation
(1) with respect to i, we get
po = ¥ divji = divjp. s
ot 4
The differential heat- and mass-transfer equations
may be obtained from equations (1) and (2) if use is
made of the Fourier heat-conduction equation

q= —iVT ©6)

where 1 is the total or effective thermal conductivity.

2. At first consider the simple case of no convective
or filtrational mass transfer (a zero gradient of the total
pressure inside the body). If the mass content and
temperature are taken as potentials of diffusional mass
transfer, then the expressions for non-isothermal dif-
fusion laws are of the form:

Ji= —mipoVihi+amipodiVT; M
Jm=2Ji= —AmpoVi+anpodVT. 8)

In transient processes the source of vapour mass I, or
sink of liquid mass I,

Ly= -1 = Spog—! 9
T
If as an approximation thermodynamic properties
(specific heat and thermogradient coefficient) and
transfer coefficients (thermal diffusivity and moisture
diffusivity) are assumed independent of the coordinates
of the body, then when T and u are chosen as
transport potentials the differential heat and mass
transfer equations will be of the form:

aT 2 er ou
= T+—— 10
ot av ¢ ot (10)
Ou 2 2
— = a,,Vu+a,ovV-°T. (11)

ot

The thermogradient coefficient & is based on the
moisture content difference (8 = 4,).

When drying laminated materials composed of in-
homogeneous moist bodies in contact use is made of
the system of differential heat and moisture transfer
equations with 6, T as transfer potentials, since at the
contact of individual layers there occurs moisture
content discontinuity (Fig. 1).

The moisture transfer potential @ i$ the function of
the moisture content and temperature of the body

0=0ou,T)=0u,T). (12)
Then,
do oo 1
do=|—] d — ) dT = — d
(614)7 u+<6T>,, T c du+6;dT, (13)

where C, = (0u/d0)r is the specific isothermal mass
capacity (moisture capacity); 67 = (86/0T), is the tem-
perature coefficient of the mass-transfer potential.

Using relation (13) and assuming thermodynamic
properties C,, and 67 independent of the coordinates
and time, the system of equations (10)-(11) takes the
form:

T erC,, 00
— =dVT+—"— (14)
ot ¢
00
= a,V0+a,dV:T 15)

ot
where the thermodynamic properties and transfer co-
efficients are equal to:

5 ’
¢ =cterColy, & = ~+e',(“-—1> (16)
C, a

m

a =Acpy, a=ac/c, a,=a,c/c (17)

respectively. Equations (14)-(15) are the same as
(10)—(11) differing by the values of heat capacities,
diffusion and thermogradient coefficients.

Moisture transfer equation (15) may be obtained
from mass conservation equation (5) using the non-
isothermal moisture diffusion law

Jm= —AVO—2,6,VT (18)

where Jy is the thermogradient coefficient based on

the potential difference*
é

8 = ——0%.

9 Cm T

Relation (19) is obtained from formula (3) when passing

from equation (8) to equation (18). Substituting relation

(18) into equation (5) and assuming 4,, and d, indepen-

dent of the coordinates give differential equation (15)

(19)

*The dimensions of the coefficients &(deg™!) and
So(degM™!) are different, therefore, the coefficient
9(09 = Cn0p) is introduced in some works. It has the same
dimension as &g.
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with the same expressions (16)—(17) for the coefficients
an, and 4",

In some papers and books the subscripts at the
coefficients o', ¢, a,,, 6’ are omitted, that may result
in the wrong idea that the coefficients «, ¢, a, and J
in equations (10)—(11) are the same as in equations
(14)~(15). It should be borne in mind, which of the
transport potentials are used for the description of heat
and mass transfer. However, for many moist materials
under drying the quantity C,07 is small (not the
quantity 0% itself but rather the product C,007), so that
erC,,07/c « 1, then we have

=c¢ d=aqa, da,=0ay. (20)

This is the case when the heat capacities as well as
heat and moisture diffusion in equations (10)—(11)
and equations (14)—(15) are the same.

If the inequality 6%7(aja,—1)/0 «1 holds, then
6 = C, & (the reverse situation corresponds to dy =0,
i.e. thermal moisture diffusivity may be neglected
(moisture transfer is described only by mass-transfer
gradient), and we then get

Cpnd = O0p(Lu™'—1). (21)

Once the moisture transfer potential does not depend
on temperature (8 = 0), the thermogradient coefficient
6 is not equal to zero (Jy = 8/C,), since the second
term of formula (18) describes thermal moisture dif-
fusion. Similar relations are valid in the case of non-
isothermal diffusion in binary gas mixtures when the
mass concentration gradient may be expressed in terms
of partial pressure and temperature gradients. In addi-
tion, thermodiffusion or the Soret effect should be
taken into account [7].

3. In case of intense moisture evaporation inside a
capillary-porous body the total pressure gradient arises
that results in a filtration pattern of vapour transfer.
On the basis of the Darcy law the mass flow density
Ja1 in such a situation is defined by the relation

Jar =ji+js = —k,VP. (22)

The differential equation governing the pressure field

in the body is derived from the balance equation for

humid air mass in pores and capillaries of the body
Oluy +u3)

. Ju
po————= —divjs = €00+
ot ot

(23)

using relation (22).

If as an approximation humid air (vapour—gas
mixture) in capillaries and pores of a body is con-
sidered to obey the Clapeyron equation of state and
swelling of capillary walls to be neglected, then it may
be written

MIIb
pod(uy +uz) =

dP——dT+—db) (24
RT(P +b >()

where b is the saturation of pores and capillaries with
vapour and air.

Using relations Y ;-4 b; = 1 and u, ~ u. after simple
algebraic manipulations we may obtain

cT 2 2 2
3 = K11V T+K12V U+K13V~P (25)
T
u 2 2 2
“F—: K21V T+K22V M+K23V P (26)
T
ap 2 2 2
T=K31V T+K32V ll+K33V P (27)
T
where the coefficients K;;(i, j = 1, 2, 3) are equal to:
&1, 0 er
Kii=a+ Py Ki;=-—ap;
(28)
Kis =2 and
13 ¢ mYp
Kyy=and; Kipp=a. Kui= am5p 29
Per
K31 = Qm ( ﬂ_F>
B
(30)
Ky =a ( ﬁ““—)
K33 = ap+a,,, ( ﬁ-*) (31)

where Cp is the specific capacity of vapour moisture
(capacity of a capillary body with respect to humid air)

MTib
poRT

32)

B =

a, is the convective diffusion coefficient (a, = K,/Cgpo);
B is the coefficient dependent on porosity IT and
moisture content u:

Ppg

= 3
p2l1—pou )

The coefficient accounts for a change in the degree of
filling up pores and capillaries of the body with humid
air, depending on moisture content of the body; ¢, is
the relative coefficient of filtration flow of vapour
moisture

S, =ky/ampo. (34)

When deriving heat-transfer equation (25) an as-
sumption was made that since convection heat transfer
in pores and capillaries is small, it may be neglected.

If T, 6 and P are taken as moisture transfer potentials,
then the system of differential heat- and mass-transfer



Differential equations of heat and mass transfer 5

equations assumes the form:

oT
3 = K{,V?>T+K{,V*0+K{;V?P (35)
T
a0 2 2 2
5= K3 VT +K;5,V*0+ K;3V*P (36)
T
JoP ) R .
T
where the coefficients Kj; are equal to:
Crn O Cplim
Kip+a+ 20y — o ontng,
erCpay,  erCpap
Ki» = =y
¢ c
C, erC,,
Kis =8’c 8 =5 (39)
K31 = andg+afy; Ky =an; Kiz = and),.
Kb, = a8, f— £+erP +aP_
31 = AmOgLlm Cp T’
& erP
Ky =a,Cpl p——+—1]; 40
32 = am (ﬁ Cs cT) (40)
e erP
Ki;, = mCnOul f——+—
33 dpta (ﬂ CB CT)

The relative coefficient of filtrational moisture flow J,,
is based on the moisture diffusivity 4,,
5= e %
? ;"m Cm
Comparison of the coefficients K;; and Kj; shows that
the coefficients Kj; involve an additional factor of
specific isothermal mass capacity C, which is a con-
version factor from the moisture content u to the mass-
transfer potential. Here it is of importance to note that
when deriving the system of equations (35)-(37) the
temperature coefficient of moisture transfer potential
was not assumed to be equal to zero (01 # 0). It is then
quite natural that thermogradient coefficients 6(6 = 4,)
and Jdy have different values since these are based on
different moisture-transfer potentials at the same tem-
perature drop. Unlike the coefficients 6, and 4, no
direct proportionality between the coefficients d, and 6
exists [see equation (19)].

It should be noted once more that sometimes in
the system of equations (35)-(37) the prime to the
coefficients K;; is omitted but this does not mean that
these are equal to the coefficients Kj; in equations
(25)—(27). It may also be noted that the calculations
made by Mikhailov [8] show that the coefficients f
and erP/cT are considerably less than ¢/Cp for a great
number of moist materials, therefore, the expressions

41)

for the coefficients K;; may sometimes be simplified;
however, experimental determination of these coeffi-
cients is the most reliable way.

4. For practical approximate calculations transfer
equations (27) and (37) may be simplified. Since mass
content of vapour and air in capillaries and pores of
a body is negligibly small, as compared to that of liquid
(uy + ua «< uy), the left hand side of equation (17) may
be assumed zero. Then, from equation (23) we have

ou = k,V?P.

o 42)

EPo
The physical significance of this equation is that the
total pressure drop inside this body occurs due to liquid
evaporation and resistance when vapour moves inside
the body (resistance to the filtrational moisture flow).

Relation (42) allows the terms K;; to be eliminated
from equations (25)-(27), and system (25)-(27) to be
reduced to system (10)—(11), and system (35)-(37), to
system (14)—(15). It has therefore made it possible to
use the system of equations (10)—(11) or similar system
(14)~(15) in drying technology.

In the moist state region more simplifying assump-
tions may be made. With moisture content of a body
greater than the hygroscopic one the vapour pressure of
the material is independent of the moisture content
but depends only on the temperature (pressure of
saturated vapour is a single-valued temperature func-
tion). Then with rather intense evaporation of a liquid
inside the body the total pressure P inside the body
is a function of the temperature only (P = f(T)). As
an approximation it may be written:

0 oP
spo—u k< >V2T

43
ot °T 43)

In this case the differential heat-transfer equation is
reduced to the ordinary differential heat-conduction
Fourier equation involving the effective thermal con-
ductivity which accounts for heat spent for liquid
evaporation inside the body. However, with intense
evaporation of a liquid inside the body and large
moisture flows the convective contribution to heat
transfer inside the body should be taken into account.
So, the heat-transfer equation is of the form:

oT r [OP ¢k, {OP
¢ yer-—ole VT). (44
o [”cpo(a?")"] <6T>‘ o

5. The phase conversion factor ¢ is a property of
unsteady moisture transfer. It was introduced by
relation (9) to characterize a source of vapour moisture.
For steady moisture transfer the expression for a source
must be different since in this case du/¢t —0,¢ — o0,
hence, the source term in relation (9) possesses un-
certainty, which may easily be determined. Thus, we
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have:
Ia= =5 =divj| = ampoVu+am pod VT, (45)

The quantity a,;d, is the thermodiffusion coeffi-
cient of vapour moisture in a capillary-porous body
(aX = a,,10;). Here the coefficients a,,;, 0, are assumed
independent of the coordinates. Relation (45) is a more
general expression for the source of vapour moisture
I,,, which is also valid for unsteady moisture transfer.
Formula (9) is obtained as a specific case from equation
(45). As a result, instead of the system of equations
(10)~(11), we have the system of differential equations
similar to equations (25)—(26) without terms V?P:

aT
—— = K1 V2T +K{,Vu (46)
T
ou
pr VAT + K5,V 47)
where the coefficients Kj;(i, j = 1,2) are equal to:
r r
Ki1 = a+a,10, ‘lci =a+ah —;
(48)
,
Ki/Z = amy *13
c
K, = a,0, K3 = ay. (49)

Comparison of equations (48)-(49) with equations
(28)—(29) shows that K3, = K,, K3, = K;,; the co-
efficients K{; and Ky, will be equal to Ky, Ki,,
respectively if ¢ = a,,;/a,, and 6 = §; are assumed (for
details of such assumptions, see [7]).

The differential heat- and mass-transfer equations
(46)—(47) may thus be used to calculate moisture and
heat transfer in capillary-porous bodies with any
changes in u and 7, including steady processes. The
solution of equations (46)-(47) is used in building
thermophysics, in chemical engineering as well as in
development of experimental methods for measuring
thermophysical properties of moist materials. It is
quite natural that the system of equations (46)—(47)
may be correlated by the additional potential of
moisture transfer, P. The system of equations (25)—(27)
or (35)—(37) is then obtained, in which instead of the
factor ¢ the coefficients of diffusion a,,; and thermo-
diffusion ak,(ak, = a,, .8;) of vapour moisture will be
introduced into the formulae for the coefficients K;;
and Kj;.

Thus, the differential heat- and mass-transfer equa-
tions (25)-(27) or (35)-(37) are the most general ones
for diffusional heat and moisture transfer in capillary-
porous bodies with the kinetic coefficients which con-
tain coefficients of diffusion and thermodiffusion or
filtration transfer of vapour moisture instead of a phase
conversion factor. Equation (42) is however used with

high accuracy instead of equations (27) and (37).

In this case, when the total pressure gradient is
inside the body (VP # 0), the system of the heat- and
mass-transfer equations will contain the coefficients of
diffusion a,, and thermodiffusion a,,d, for vapour
moisture, i.c.

oT er Cu
——=aVi T+ —;
ot cor
S . (50)
u u
~ = amZVZu +a,,,252V2T+ &E—.
ot ct
Such simplifications are necessary since when the

equality (u ~ u,) is used, the error is negligible. If use
is made of the formal mathematical apparatus of
irreversible thermodynamics, then such complicated
systems of differential equations may be obtained
which are of no value for practical calculations [9].

2. LIMITING TRANSITIONS

1. Letduring heat and mass transfer the temperature
of a moist body be unchanged with time, i.e. 8T/é1 = Q.
Then, two cases are possible:

{a) equation (46) implies that VT = 0 and V?u = 0.
This is the trivial case of equilibrium state (temperature
and moisture content do not vary not only with time
but also are independent of the coordinates x;, ie.
u = const and T = const) or the case of steady state,
for example, in one-dimensional problems the tempera-
ture and moisture content are linear time functions;
(Vu = const; VT = const).

(b) quasi-stationary state at 0T/ér = 0 from equa-
tion (46) it follows
_&VZT 0}“‘ = A

X, #0100} = flx) i=123 (51

1

Viu=

(the primes at Kj; are omitted, i.e. K = K;;, i,/ = 1,2),
i.e. the fields of both dimensionless moisture content u*
and temperature T* are similar. Since the form of the
function f(x;) does not depend on time, then according
to equation (47) the local velocity du*/dtr will also be
independent of time. In the specific case at Cu/dt =
const the distributions of temperature and moisture
content in one-dimensional problems are described by
a simple parabola. Such a case is. encountered in the
constant drying rate period when moisture content at
any body point is a linear time function (Ju/0t = const)
and the distribution of moisture content inside the
body with symmetric moisture transfer (infinite plate,
cylinder, sphere) is described by a parabola. The tem-
perature at any point of the body does not change
with time (0T /87 = 0). If in the constant drying rate
period evaporation occurs only at the body surface
(no evaporation inside the body ¢ =0 or a,; = 0),
then the temperature at all points of the body will be
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the same, and to a first approximation it will be equal
to the wet-bulb temperature T,(T = T, = const, VT = 0,
V2T = 0). This is shown in Fig. 2 when T, = 60°C;
T, = 36:5°C, du/dr = 0-028kg/kgh (2-8%h). This case
does not contradict relation (51) since at V3T = 0;
e=0and K;, =0, and K;; # 0 and V?u # 0. Indeed,

25

]
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i - ; [
2 13

250 min

W,

450 min

N (N IR N
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(o]

F1G. 2. Moisture content distribu-

tion u over the radius of a moist

clay sphere in the constant drying

rate period at different times
(T, = 60°C; T, = 36:5°C).

at 0T/0t =0 from equation (10) we have that at
=0, V2T = 0. If in the constant drying rate period
(0T /0t = 0, ¢u/ét = const) evaporation occurs inside
the body (g # 0, a,,; # 0), then according to expression
(51) the temperature distribution is described by the
parabolic law in such one-dimensional problems since
K, # 0. Such a case is presented in Figs. 3 and 4. All
the above cases of moisture content and temperature
distributions are observed in the constant drying rate
period of colloidal capillary-porous bodies and are at
present the experimental facts of experimental laws.

2. Let moisture content of a body be invariable
with time during heat and mass transfer (quasi-
stationary state with heating of a moist body), ie.
du/0t = 0. Then, from equation (47) we have
— & \v& T,

K22
If K;; #0 and K,, # 0, then the field of moisture
content of the body is similar to that of the temperature
(Fig. 5). However, at cu/0t = 0 the local heating rate
is not zero 0T/dt # 0 according to equation (46), i.e.
the temperature profile inside the body does not vary
with time since the temperature behaviour at any body
point follows the same law. Such situations may be
found in experimental thermophysics, for example, in
the method of quasi-steady heating of moist bodies
when determining the thermogradient coefficient and
thermal conductivity of moist bodies. In this case a
moist body is heated with a constant rate (°C/min)
when the ambient temperature is a linear time function.
Since some time instant the temperature at any body
point is a linear time function (Fig.6) and in one-
dimensional symmetric problems the temperature dis-
tribution is described by the parabolic law. The

Vi = at  duor=0. (52

T
375 I Pt l Temperature . I I I l I 1 15
- 350 x~at surface
€ — o —2:5mm from surface 105
~
2a-54
2 300k o—83 495
a—11-0
- x—14-0
|y 250+ o—16-0
F. a=Ii7-8
200+ o— 226

o— at centre

Concentration of moisture 4,

Temperature 7,

L L

; | | ~toood ) |
o 40 B0 120 160 200 240 280 320 360 400 440 480 520 560 600
Time T, min

F1G. 3. Drying curve é = f(t) and temperature curves T = @(x, 7) of a moist ceramic plate with
infrared drying.
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F1G. 4. Temperature distribution across a
moist ceramic plate T = f{x,1) for the
case in Fig. 2.
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F1G. 5. Change of the temperature with

time T = f(r) for water (I) and peat (II)

in a metallic spherical flask for the co-
ordinate r = 0 (sphere center).

Temperature
Per cent moisture

-0
Surface Center

parabolic law. The parabolic moisture distribution (Fig.
7) corresponds to the parabolic temperature distribu-
tion. The coefficients ¢ and J are determined by the
drops in temperature AT(AT = T,,— T,,) and moisture
content Au(Au = u,,—u,,), i.e. T=T,,—(r/R*T,—T,);
u = u,,— (r/R)*u,,—u,,) and i heat-transfer coefficient
is known, then thermal conductivity may also be found.
Figures 6 and 7 show heating of a moist part in a
metallic spherical flask 9-94 cm dia in water at a con-
stant rate b = 0-8°C/min. The temperature drop AT is
equal to 32°Cand the moisture content drop Au = 14-8.
The thermogradient coefficient é = 14:-8/32 = 0-463%/

Water
70

60

°C

Peat

Temperature,

40

30

20 lLllilJ
0 20 40 60 80 100

Time, min

F1G. 6. Distribution of temperature
T = f(r/R) and moisture content
u = f(r/R)in a clay sphere heated at
a constant rate b = 0-37°C/min in a
quasi-stationary state.

170
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=
@
(5]
A
@
(=%
S 160
@
Pl
=1
£
@
[<]
-3
L i L.
|50' o5 5
Surface r/ R Center

F1G. 7. Moisture content distribution of peat after
80 min heating (Fig. 4) with the uniform initial
distribution 158 per cent (v = u, = 1-58 kg/kg).

°C ~ 046 x 10~ ?kg/kg deg. The thermal diffusivity
bR? _ 0-8(4-98)*

bT,—T,) 6128
= 0-26cm?/min x 4-3 x 107 " m?/s.

a=

In [2] moisture migration is shown to occur in the
form of liquid. Figure 4 shows heating of a clay sphere
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covered with moisture insulation in humid air at a
rate b= 0-37°C/min. In this case the coefficient
3 =0125 x 10" 2kg/kg°C. It is quite natural that at
oufdt =0 the trivial case dT/01 =0 may occur at
V2u =0 and V2T = 0 (steady state T = const; Vu =
const or equilibrium state u = const; T = const).
Finally, consider transition of equations (46), (47) into
the classical Fourier heat-conduction and Fick dif-
fusion equations. In a perfectly dry body there is no
mass transfer (at u=0; K,, =0; Ky, =K, =0).
Then, from equations (46) and (47) we get the classical
heat-conduction equation
oT

— = K,;V2T = aV*T.
Jt

(33)

The equality u = Q does not imply that according to
equation (47) V2T = ( since the factor K,; = 0. The
same equation may be obtained from equations (46)
and (47) for a moist body with maximum possible
moisture content ., (swelling moisture). Then, at
small temperature drops there is no moisture transfer
(at u = up,y, Koy = Ky = Ky, =0), hence, du/dt =0,
and equation (53} is obtained from equations (46)
and (47). In this case the moist body is heated in a
similar fashion as the dry body with no re-distribution
and evaporation of moisture (moisture content at any
point is constant and the same ¥ = tpay = Uconst): If
during mass transfer the body temperature is constant,
T = const, (6T/6t = 0; VT = 0; V>T = 0), then equa-
tions (46) and (47) the classical Fick diffusion equation
is obtained

E = Kz ZVZM.
Equation (46) at V2T =0 and 6T/dt =0 does not
imply that V2u = 0 since K;, = 0 because a,; = 0 or
& = 0 (no evaporation inside the body).

The experimental data and calculations are specially
presented here from the author’s works of 1935-1940
to attract the readers’ attention to the fact that
numerous problems of the theory for transport
phenomena in capillary-porous bodies were solved long
ago and were obviously unknown to foreign readers,
as at present the works appear which deal with these
particular problems in the same manner [10-11]. The
thermogradient coefficient § is a counterpart of the
thermodiffusion ratio K; in the theory of thermo-
diffusion in binary gas mixtures [12-13]. The change
in & with moisture content u for moist capillary-porous
bodies (Fig. 8) is similar to that of the thermodiffusion
ratio Ky with concentration of the diffusing mixture
component. It is important to note that for maximum
moisture content (¥ — uy,,) the thermogradient coeffi-
cient & is zero (& - 0). Hence, when the body is heated
in the case of maximum moisture content, no re-

(54)

W, per cent

F1G. 8. Thermogradient coefficient §(% deg) vs clay

moisture content u(%); (a) po = 1142kg/m?; (b) po =

1000kg/m*® at a mean temperature: 1-23°C; 2:33°C;
343°C according to [12].

distribution of moisture content due to a temperature
gradient occurs. It may also be noted that some
relationships of heat and mass transfer in capillary-
porous bodies may be used for studying thermo-
diffusion and diffusion thermoeffect in binary gas
mixtures.

3. INTEGRAL EQUATION
The integral equation of heat and mass transfer
may be obtained from the system of equations (46)-(47).
If T and 4 are used to denote mean volumetric
temperatures and mass content, respectively

1

i=—1 udV (55)
|4 J ”

then considering the transport coefficients and thermo-
dynamic properties be invariable over the volume, we
have

T—ij Tdav,
V)

dT Vd
y o aJ V2T dV+ Ve ——
de ) e dt
(56)
r dii
=a J VTdS+Ve——
(S) cdr
here use was made of the Gauss—Ostrogradsky theorem.
Using the boundary condition
—AVT)y+ (1) —rj2u(1) = 0 (57

where g(7) is the heat flux density near the body surface
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and the differential equation

A

~
(&%)

po s = —div a(t) +ep0 s (58)
upon slight transformation we have
, du dT
gu(r) = rPona‘}'PoRVC a4 (59)

where §,,(z) is the heat flux averaged over the surface
area, Ry is the ratio of the body volume V to its
surface area S (Ry = V/S).

Integral equation (59) shows that the heat (1)
supplied to the body is spent for liquid evaporation
rpoRy . dii/dt and heating of the body po Ry cdT/dz.

Up to now rather slow motion of liquid and vapour
in a capillary-porous body has been considered. The
situations are however possible when liquid flows
with a high velocity. So, in such a case temperatures
of the solid skeleton and of liquid in pores are not
the same.

4. INTENSE HEAT TRANSFER

Note that the subscript “s” refers to the solid skeleton
and “f”, to the liquid flowing inside.
The mean temperature in an infinitesimal volume of
a body will then be equal to:
— 1 T 1 T
T=1n’=nh
where IT is the porosity.
Upon using Fourier—Kirchhof’s equation separately
for the liquid and skeleton and summing them up, we
arrive at [15]:

(60)

oT —
[Mlpscy+(1-ID)pses] T cpprdiv[IITo,]
= Ay divigrad[I1T) + A div[grad(l — )T ] +divg* (61)

where §; is the mean linear velocity of the liquid
(8, = js/py), g* is the heat flux vector, in addition to
the heat-conduction one

- | —
q*=Cfpf[ﬁfo“Ufo]‘!’(A,f_/L)*V*J TdS (62)
5,

where integration is performed along the surface S
being in contact with body pores (S is the surface con-
fining the volume V). From equation (61) it follows
that unlike Fourier-Kirchhof’s equation. heat is trans-

ferred not only by conduction
g= —[IA;+(1 -4 ]grad T, (63)
but also by contact transfer between the solid skeleton
and liquid (integral term in expression (62)) as well as
by turbulent heat transfer (expression in square

brackets in (62)). Indeed, the heat flux

crpsliyTr—v,Tr] (64)

is a counterpart of the turbulent heat flux g, in
moving liquid

(65)

Thus, in a porous body additional heat transfer due
to a complex mechanism of liquid motion may exist.

Dwell upon this point in more detail. In most cases
turbulent heat transfer is considered proportional to
temperature gradient

Gur = pp(TV = Tv) = ¢, pTV.

Grur = CppO(TE_ Tl)) = /AtturVT (66)

where Anr 1s the turbulent thermal conductivity
(Awr = cppauw); forliquid flow (¢, = c2; 02 = p; A2 = A).
Use of Fourier—Kirchhof’s heat-transfer equation for
turbulent incompressible liquid flow (p = const) gives

oT .
cpp<_+d1v UT) = div(AVT). (67)

ot

If averaging is made with respect to time
T(t) = i = L
At At

then T, § are different in the time interval Atr. Thus,
we have

T+ At t+Ar
j T(r)dr; ©(r) j v(r)dr (68)

°T _ _
¢pp %? +¢,pdiv(eT) = div(AvVT). (69)
Usually
oT = §T—iT+0vT = 5T— (5T—0T). (70)

that results in Fourier-Kirchhof’s equation with the
additional term div(T—vT), which is referred to as a
divergence of the turbulent heat flux div gy,

oT . - v
Cpp E—k VT | = div(4ew VT). (71)
The alternative approach is however possible. vT is a
vector quantity which may be compared with the vector
quantity 5T by means of the second-order tensor B

oT = B.5T. (72)

Then, instead of equation (71) we have

éT — —
c,,p~67+(cppVT).(z‘).B)+c,,ptr(TVv.B)
+c,p. T.0.divB =div(AVT). (73)

Since the liquid is incompressible, div i = 0. Equation
(73) essentially differs from equation (71) as it contains
the turbulent transfer coefficient B instead of the
turbulent thermal conductivity. From our point of view
transition from the vector vT to the vector 5T is more
correct than use of relations (67) and (70). Similar
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transformations are possible for relation (62), using
formula (72). In this case, however, tensor trans-
formation (72) which establishes the relationship
between vT and 57 is single but not necessarily linear.
The transformation matrix is found from the equation
which may be solved using the boundary conditions
at the surface A4;. Thus, for capillary-porous bodies
introduction of turbulent thermal conductivity allows
additional assumptions to be avoided.

The integral relation in formula (64) defines addi-
tional heat flux at the contact line of the liquid and
the capillary walls. The same situation takes place in
case of filtrational liquid motion inside a porous body.

Apart from hydrostatic pressure and other external
forces liquid motion inside the porous body involves
an additional force exerted by the liquid on the porous
structure. The value of the force f; calculated per unit
volume [15]

1
fg=+VJ [#-pé].n'da=Re  (74)
A;

where R is the drag coefficient, which is a function of
a local liquid velocity averaged with respect to the
volume. The porous body in this case is assumed to
be a non-oriented porous structure. The differential
equation of filtrational liquid transfer will then be of
the form:

Vp—ndiv(Vo)+ Rt = 0. (75)
Equation (75) differs from the ordinary Darcy fil-
trational equation by theadditional term Rv. Poiseuille’s
equation for laminar liquid motion in capillaries is
obtained as a specific case (R = 0) from the Darcy
equation.

5. RECESSION OF PHASE CONVERSION SURFACE

In some cases of heating of moist porous bodies
the evaporation surface (surface of phase conversions)
may recede. In such a case the problem on heat and
mass transfer is mathematically formulated as that
with moving boundaries, which may be referred to as
an example of the Stefan problem of freezing water or
moist body [17]. Solution of problems with moving
boundaries affords great difficulties. However, these
may be reduced to ordinary heat-transfer problems
by introducing equivalent transport coefficients which
account for heat of phase transitions. Let us illustrate
this on the simplest Stefan problem on freezing of a
moist body. The one-dimensional Stefan problem is
formulated as follows:

oT ¢

oT
C1P1E=&<]-1 g>, O0<x<i(r) (76)

Tix,0)= o)< Ty; O0<x<&0) (77

Ti0,7) = fily< T;; >0 (78)

T 8 [, oT
Csz“a;=5£<lzg€'); (y<x<lLt>0 (79
T(x,0) = @2(x) 2 Ty, E0)<x<! (80)
T =f0)>T;, >0 (81)

where T; is the freezing surface temperature (for water
Ty = °C); the subscript 1 refers to the frozen zone
(porous body plus ice); the subscript 2 refers to the
moist zone (porous body plus water).

The conjugation conditions are

Té(), 1] = T[¢(), ] =T} (82)
aT, oT, )
Azaz-=/11~671=ruod—é (83)

As has been shown in [18], this Stefan problem may
be reduced to the non-linear heat-conduction problem
by introducing the equivalent volumetric heat capacity
¢p defined by

ép = cp+rugd(T—T) (84)
where
, T<T,
cp =Pt (= (89)
C2pP2, T> Tf.

Here 8(T—1T;) is the Dirac delta function. Then,
equations (76) and (79) may be reduced to the single
equation

L oT 0 < 6T> {/11,
= (1) A=
dr  Ox \ Ox Az,
In [18] equation (86) was solved numerically. Good
agreement was achieved between the solution obtained
and the exact analytical one. In particular, the Stefan
law of recession of a freezing surface &= ./t was
obtained.

The problem on determination of mass content and
temperature fields with evaporation surface recession
involves solution of the system of differential heat- and
mass-transfer equations with moving boundaries. For
a one-dimensional problem it may be written:

T<Tf

86
T>T;. ®6)

capeTa _ 0 (5 T, . 0 S ®7)
07 Tax\"Pax )T O e 012

=1,
%:i a % +a 5% (88)
ot ax\ M ox mO% o

where the subscripts (i) denote: (i) =1 is the evap-
oration zone; (i) = 2 is the moist zone.
The conjugation conditions of these bodies are such
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that at x = £(1). we have

Ty = 10y (89)

iy = U2y

A o] o) ~

Cu T, cu CT,

(1) : A (2) N (2)

Uy| =2 4 3y 2 | = )| =2+ 2y = | (90)
m(l)[ ax ® 5y } m( )|: ax @ a0

Ty ,
Ay o {1 ~&uy)jn(?)

T,
B [A‘Z’ a(j)”

r(l— 8(2))./(2)(1):' . 9

For this problem the Stefan problem may be obtained
as a specific case. In the evaporation zone only vapour
(gn), = 1) is assumed to move while in the moist zone
only liquid (g.z, = 0). Then, invariable mass content of
the moist zone is assumed (u, = u = const), hence, a
mass flow in this zone is absent (g, =0). In the
evaporation zone mass content is equal to zero
(uq)=0). From equations (87) and (88) differential
equation (66) is then obtained, and from conjugation
conditions (90) and (91) condition (83) follows. In this

case mass transfer is equal to:
£

J1) = jilr) = ja(t) = ",00“03:~ 92)
T

If only vapour transfer is assumed to occur in the
evaporation zone with no liquid transfer (¢, = 1) and
only liquid (g5) = 0) is assumed to flow in the moist
zone, then the phase conversion factor changes spas-
modically. Not the temperature of the evaporation
zone surface but certain mass content u,, at which
recession of the evaporation surface begins, serves as
the boundary of a jump change in the factor. Unlike
the Stefan problem on freezing of a moist body, the
temperature T, of the evaporation surface is variable.
The evaporation surface is characterized by some
mass content u, below which mass supply becomes
less than vapour removal from the evaporation surface,
that causes recession of the latter. Then, instead of
the systems of differential equations (87) and (88) with
moving boundaries it is possible to write an ordinary
system of the differential equations

T o /. eT N ou ©3)
Cpo—= | A—|+rpoe—
Porar Tax\Max )T Pof 5
‘u ¢ Cu cT 0
=\ G+ nady |+ e — (54}
0t Ox fx ot

in which the phase conversion factor changes spas-
modically, i.e.

&= e(u) = [H(u) —H(@u—u)] 95)
here H(z) is the single Heaviside function
H(z) = {0 <0 96)
1 z>0.

Differential mass-transfer equation (94) describes liquid
transfer, and vapour transfer is accounted for by the
negative source &Cu/¢t. The system of equations (93)—
(94) is analogous to equation (50) but the phase con-
version factor varying spasmodically from 1 to 0 when
u=uy (Fig.9). However, for some porous materials

08—

06— | e W) =HW-H -y
m

(2)

0-2—

o] U, u

F1G. 9. Step changein e.

the phase conversion factor varies with mass content
continuously rather than spasmodically (Fig. 10). In
this case the factor is a continuous mass content
function e(u). For approximate calculations the con-
tinuous curve e(u) may be replaced by the step one
(Fig. 10).

e(u) ~ 97)

The advantage of such replacement is that instead of
the complex function e(u) two limiting values u, = 0-04
and ¢ = 0-3 at v > 0-04 are chosen.

For a number of porous materials it has been
established experimentally that the rate of evaporation
surface recession is constant (d¢/dt = f§ = const). The
complex curve &(x, t) may then be replaced by the step

H(u)—0-7TH(u—004).

10

o8

0§
¢ elu)
o4
—— —r
o2
| | | | L
9 2 a 6 8 10 12 14 16 20

ux10?

F1G. 10. Plot of factor ¢ vs moisture content for quartz
‘sand [19].



Differential equations of heat and mass transfer 13

€(x, 1)

0 X

F1G. 11. Relationship between ¢ and infinite
plate coordinate (AR thick) for different times.

one (Fig. 11), and the approximate formula

e(x, 1) = H(x)— H(x— 1) (98)

may be used where H(x) is the single Heaviside
function. It is convenient to introduce the single Heavi-
side function when using the integral transformation
technique. Thus, the system of differential heat- and
mass-transfer equations (93)—(94) may be used to solve
the problems on recession of the evaporation surface
(problems with moving boundaries). This is due to the
fact that when deriving formula (9) for a heat source
no limitations are imposed on ¢ which may be any
function of mass content or the function of coordinates
and time and may change spasmodically.

Finally, it should be noted that capillary-porous
materials are widely used as wicks of heat pipes. Heat
pipes allow heat to be transferred in one direction
(heat diodes) and thermostating to be performed in the
presence of variable heat source. Their operation does
not depend on the presence of a gravitational field,
therefore, these are widely used in space equipment.
For instance, on the space vehicle “Skylab” thermo-
stabilization of the cabin was carried out by means of
low temperature heat pipes. At the Heat and Mass
Transfer Institute the works are being carried out on
application of heat pipes for thermostating of electronic
equipment, internal combustion engines as well as for
cooling of super-conducting electric cables (cryogenic
transmission lines). The current-carrying part of the
cable is made of a pack of high-conducting wire nets
covered with porous insulation.

For calculation of porous wicks in heat pipes, whose
application has been considered earlier, it is necessary
to know the basic relationships of heat and mass
transfer in capillary-porous materials. Such knowledge
was accumulated during the recent decades from in-
vestigations of drying processes of moist materials and
should be used for developing low temperature heat

pipes.
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SYSTEMES D’EQUATIONS AUX DERIVEES PARTIELLES POUR LE TRANSFERT DE
CHALEUR ET DE MASSE DANS DES CORPS MICROPOREUX

Résumé—Cet article est une courte revue des travaux principaux d’auteurs soviétiques dans le domaine
de la description mathématique des phénomeénes de transfert de chaleur et de masse dans des corps
microporeux. Le but de ce travail n’est pas seulement d’établir la priorité des travaux dans ce domaine,
mais aussi de dégager les voies de développement de méthodes analytiques.

On présente les méthodes pour décrire les phénomeénes de ffansport avec différents potentiels de
transfert et on donne la relation entre les coefficients de transfert et les caractéristiques thermodynamiques
des corps microporeux.

On précise les limites de transition des équations classiques de Fourier et de Fick. Les solutions pour
les cas extrémes sont illustrées par des résultats expérimentaux. On donne une bréve description des
travaux récents sur le transfert turbulent de chaleur et de masse dans les corps microporeux et sur les

méthodes de résolution des problémes de transport avec limites déformables.

SYSTEME VON DIFFERENTIALGLEICHUNGEN FUR WARME- UND
STOFFUBERGANG IN KAPILLAR-POROSEN KORPERN

Zusammenfassung—Die Arbeit enthilt einen kurzgefaBten Riickblick iiber hauptsichlich von russischen
Autoren auf dem Gebiet der mathematischen Beschreibung von Wirme- und Stoffiibergangsphinomenen
in kapillar-porésen Korpern durchgefiihrten Arbeiten. Ziel der vorliegenden Arbeit ist nicht nur, die
Prioritit der auf diesem Gebiet tdtigen Wissenschaftler zu sichern, sondern auch, die Entwicklungslinien
der analytischen Methoden fiir Transportphanomene aufzuzeigen.

Behandelt werden die Methoden zur Beschreibung von Transportphinomenen mit unterschiedlichen
Ubertragungspotentialen, die Bezichungen zwischen den Ubergangskoeffizienten und thermodynamische
Eigenschaften der kapillar-porosen Korper. Die Grenziiberginge auf die klassischen Gleichungen von
Fourier und Fick werden beschrieben. Die grundlegenden Bezichungen der Extremfille werden durch
Versuchsergebnisse veranschaulicht. Auf die jiingeren Arbeiten iiber turbulenten Wirme- und
Stoffiilbergang in kapillar-porosen Korpern wird kurz eingegangen, ebenso auf die Methoden fiir
Transportprobleme mit bewegten Grenzen, soweit die Dirac-Delta Funktion und die einfache Heaviside-

Funktion verwendet werden.

CUCTEMB! TU®OEPEHLIMAJIBHBIX YPABHEHUIN TEIJIO- U MACCOIMNEPEHOCA
B KAMUJIJIAPHO-ITOPUCTBIX TETAX
(OB30P COCTOSIHUS BOITPOCA)

AnHoTaims — B cTaTbe npeacraBiieH KpaTKHM UCTOPHYECKHM 0030p, B OCHOBHOM, COBETCKHX paboT
B 0011acTH MaTeMaTHYECKOTO OMHCAHMS SBJICHHI TEMNO- ¥ MacCONEePeH0ca B KAMUIITAPHO-IOPHCTHIX
TENIAX HE TOJIBKO C LEJIBIO YCTAHOBIICHHS IPHOPHTETA YYeHBIX, paboTalowux B 3ol 061acTi, HO ¢
LEJIBIO II0Ka3a NyTelt pa3BUTHA aHAIMTHYECKMX METOOB HCCIICNOBaHMS ABJICHHM TTepeHoca.
INoxa3anbl METONB! OMUCAHHA SBJIEHUH MIEPEHOCA C pa3HBIMH MOTEHLUHAIAMH TIEpEHOCca, B3aHMO-
CBA3b MeXay KO3 GHLUHEHTAMH NIEPEHOCA M TEPMOAMHAMUYECKMMH XapaKTEPHCTHKAMH KanMILIAPHO-
mopHCTHIX Ten. IIpHBeneHsI npenesibHble MEPEXOAbl K Kaaccuyeckum ypaBHenusM Dypee u dukka.
OCHOBHBIE 3aKOHOMEDPHOCTH NPEAE/bHBIX C/yYdeB HJUTFOCTPHPOBAHBI IKCIIEPHMEHTAbHBIMH JaH-
HeIMH. Kparxo onHucaHbl mociienquue paboTbl MO TYpOYJNEHTHOMY TEIUIO- M MaCCONEPEHOCY B
KanH/UIAPHO-TIOPUCTHIX TEaX, 2 TakKe METOALI ONHCAHMs 3aaad MepeHoca ¢ MOABHXKHLIMM I'DaHH-
L[AMH Ha OCHOBE MCIIQNbL3OBaHUs nenbra Gynkumu Jdupaka u enuunuHoi ¢yHkuuu Xepucakpa.



